Welcome to Pond3r API

Pond3r API allows you to integrate AI-powered blockchain data querying capabilities directly into your applications. With our API, you can enable natural language interactions with blockchain data without requiring your users to have specialized knowledge of subgraphs, GraphQL, or protocol implementations.

Pond3r API Endpoints

View available API endpoints

Key Features

  • Natural Language Understanding: Send plain English queries about blockchain data
  • Cross-Protocol Data Access: Get data from multiple chains and protocols with a single request
  • Real-Time Price Information: Access accurate price data from Pyth Network
  • Social Data Integration: Retrieve insights from web3 social platforms like Farcaster
  • Computed Data Sets: Leverage pre-processed data for complex analyses

Authentication

All API endpoints are authenticated using API keys. You’ll need to include your API key in the x-api-key header of your requests.

"security": [
  {
    "apiKeyAuth": []
  }
]

Type-Safe API Integration Examples

Here are examples of how to integrate the Pond3r API using type-safe approaches in TypeScript (with Zod) and Python (with Pydantic).

TypeScript with Zod

import { z } from 'zod';
import axios from 'axios';

// Define the liquidation event schema
const LiquidationEvent = z.object({
  liquidatedUser: z.string(),
  liquidator: z.string(),
  debtToken: z.object({
    symbol: z.string(),
    amount: z.union([z.string(), z.number()]),
    usdValue: z.union([z.string(), z.number()]).nullable(),
  }),
  collateralToken: z.object({
    symbol: z.string(),
    amount: z.union([z.string(), z.number()]),
    usdValue: z.union([z.string(), z.number()]).nullable(),
  }),
  timestamp: z.union([z.string(), z.number()]),
  txHash: z.string(),
});

const LiquidationsResponse = z.array(LiquidationEvent);

type Liquidation = z.infer<typeof LiquidationEvent>;

async function getAaveLiquidations(): Promise<Liquidation[]> {
  try {
    const response = await axios.post(
      'https://api.pond3r.xyz/v1/messages',
      {
        prompt: `Get the last 10 liquidations on Aave V3 on Base. Return as JSON array with each liquidation having:
        - liquidatedUser (address)
        - liquidator (address)
        - debtToken: { symbol, amount, usdValue }
        - collateralToken: { symbol, amount, usdValue }
        - timestamp (unix)
        - txHash
        
        Response only the JSON array, nothing else.
        `
      },
      {
        headers: {
          'x-api-key': 'pond3r-api-key',
          'Content-Type': 'application/json',
        },
      }
    );

    // Validate and parse the response
    const cleanResponse = response.data.result.replace("```json", "").replace("```", "");

    console.log(cleanResponse);
    const validatedData = LiquidationsResponse.parse(JSON.parse(cleanResponse));
    return validatedData;
  } catch (error) {
    if (error instanceof z.ZodError) {
      console.error('Validation error:', error.errors);
    }
    throw error;
  }
}

// Example usage
const main = async () => {
  const liquidations = await getAaveLiquidations();
  liquidations.forEach(liquidation => {
    console.log(`
      Liquidation:
      User: ${liquidation.liquidatedUser}
      Debt Token: ${liquidation.debtToken.amount} ${liquidation.debtToken.symbol} ($${liquidation.debtToken.usdValue})
      Collateral Token: ${liquidation.collateralToken.amount} ${liquidation.collateralToken.symbol} ($${liquidation.collateralToken.usdValue})
      Timestamp: ${new Date(Number(liquidation.timestamp) * 1000).toISOString()}
    `);
  });
};

main();

Python with Pydantic

from typing import List
from pydantic import BaseModel
import requests
from datetime import datetime
import json


class Token(BaseModel):
    symbol: str
    amount: str or float
    usdValue: str or float or None

class LiquidationEvent(BaseModel):
    liquidatedUser: str
    liquidator: str
    debtToken: Token
    collateralToken: Token
    timestamp: int or str
    txHash: str

def get_aave_liquidations() -> List[LiquidationEvent]:
    request_data = {
        "prompt": """Get the last 10 liquidations on Aave V3 on Base. Return as JSON array with each liquidation having:
        - liquidatedUser (address)
        - liquidator (address)
        - debtToken: { symbol, amount, usdValue }
        - collateralToken: { symbol, amount, usdValue }
        - timestamp (unix)
        - txHash
        
        Response only the JSON array, nothing else.
        """
    }

    response = requests.post(
        "https://api.pond3r.xyz/v1/messages",
        json=request_data,
        headers={
            "x-api-key": "pond3r-api-key",
            "Content-Type": "application/json"
        },
        timeout=60
    )
    response.raise_for_status()

    clean_response =  response.json()["result"].replace("```json", "").replace("```", "")

    print(clean_response)
    
    return [LiquidationEvent.model_validate(item) for item in json.loads(clean_response)]

def main():
    try:
        liquidations = get_aave_liquidations()
        for liquidation in liquidations:
            print(f"""
                    Liquidation:
                    User: {liquidation.liquidatedUser}
                    Debt Token: {liquidation.debtToken.amount} {liquidation.debtToken.symbol} (${float(liquidation.debtToken.usdValue):.2f})
                    Collateral Token: {liquidation.collateralToken.amount} {liquidation.collateralToken.symbol} (${float(liquidation.collateralToken.usdValue):.2f})
                    Timestamp: {datetime.fromtimestamp(liquidation.timestamp).isoformat()}
                    Transaction: {liquidation.txHash}
            """)
            
    except Exception as e:
        print(f"Error: {str(e)}")

if __name__ == "__main__":
    main()

These examples demonstrate how to:

  • Define structured schemas for Aave V3 liquidation events
  • Handle complex nested data structures
  • Format and display the results in a readable way
  • Maintain type safety throughout the application

You can adapt these schemas based on the specific data you’re querying from the API. The examples show a simple token price query, but the same pattern works for any structured data returned by the API.